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Pathological oscillations of a rotating fluid 
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(Received 20 May 1968) 

A theoretical study is made of the free periods of oscillation of an incompressible 
inviscid fluid, bounded by two rigid concentric spheres of radii a, b (a > b) ,  and 
rotating with angular velocity SZ about a common diameter. An attempt is made 
to use the Longuet-Higgins solution of the Laplace tidal equation as the first 
term of an expansion in powers of the parameter e = ( a -  b) / (a+ b) ,  of the solu- 
tion to the full equations governing oscillations in a spherical shell. This leads to 
a singularity in the second-order terms at the two critical circles where the 
characteristic cones of the governing equation touch the shell boundaries. 

A boundary-layer type of argument is used to examine the apparent non- 
uniformity in the neighbourhood of these critical circles, and it is found that, in 
order to remove the singularity in the pressure, an integrable singularity in the 
velocity components must be introduced on the characteristic cone which touches 
the inner spherical boundary. Further integrable singularities are introduced by 
repeated reflexion at the shell boundaries, and so, even outside the critical region 
the velocity terms contain what may reasonably be described as a pathological 
term, generally of order €4 compared to that found by Longuet-Higgins, periodic 
with wavelength O(ea) in the radial and latitudinal directions. 

Some consequences of this result are discussed. 

1. Introduction 
Although studies on the free periods of oscillation of a rotating incompressible 

fluid in a container date back to Lord Kelvin (1877) and Greenhill (1880) it is 
only recently that their properties have received intensive study. The papers just 
mentioned were largely concerned with containers whose internal shapes were 
spheroids and an extension to ellipsoids was subsequently carried through by 
Hough (1898). In  more recent times containers whose shapes are circular 
cylinders with flat ends and including internal boundaries, also coaxial circular 
cylinders, have been studied by Stewartson (1959). Greenspan, alone (1964, 
1965), or in collaboration with Howard (1963) has discussed some general 
properties of the oscillations, including the effect of a small viscosity. Further an 
extensive study on more abstract lines has been undertaken in the Soviet Union, 
an account of which has been given by Rumiantsev (1964, pp. 183-232). MaJkus 
(1967) has also studied the oscillations of a spherical mass of fluid in connexion 
with the problem of the geomagnetic secular variation, while Roberts & 
Stewartson ( 1963) have studied the precessional oscillation of spheroids in con- 
nexion with the driving force for the geomagnetic dynamo. Most of the explicit 
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results obtained by these authors depended on it being possible to separate the 
variables in the governing equation. Another approach has been adopted by 
Longuet-Higgins (1964,1965) who considered the container to be the boundaries 
of a thin spherical shell and was able to determine the free oscillations by con- 
sistently neglecting radial motions, so that the governing equation reduced to 
Laplace’s tidal equation. He was also able to generalize his method to include 
containers whose boundaries form only part of a shell and in a later paper (1968) 
reports extensive computations. Similar methods have been used by Stewartson 
(1967) in a related problem in geomagnetism. 

In  this survey it is of interest to note that success in determining the oscillations 
depends on being able to use a simplifying argument-separate variables, or 
neglect radial motions-and that no general explicit results are available. It is 
natural to enquire what inferences can be made from the information at  present 
available. Can we assume, for example, from these few special cases, that a 
rotating fluid always has free periods of oscillation, whatever the shape of the 
container, and is the oscillatory motion always smooth. Physically one might 
intuitively think so, but from a mathematical standpoint the assumption is 
dubious. The reason is that the governing equation is hyperbolic, for example 

while the boundary conditions are of the generalized Dirichlet type (a linear 
relation between p and Vp on the boundary). This problem is not well-posed in 
the mathematical sense; we do not know, at  present, whether in general solutions 
exist satisfying the boundary conditions, whether they only exist if h takes on 
one of a discrete set of values or whether they only exist if the boundary itself 
satisfies certain conditions. The particular examples mentioned so fa,r can be 
regarded as evidence that solutions exist for a discrete set of values of A. The 
purpose of the present paper is to provide some evidence that the solutions may 
not always be smooth. 

We were led to this possibility by studying the perturbations of the solutions 
found by Longuet-Higgins that arise when the thickness of the shell is allowed to 
increase from zero. Specifically we take the radii of the inner and outer spherical 
boundaries to be b, a and consider the dependence of the oscillations on 

(1.2) 

Longuet-Higgins solution being valid when 6 = 0. The original idea was to expand 
the velocity components in powers of e. However, we find that the second term 
in the expansion has a non-integrable singularity on the circles where the charac- 
teristic cones of the hyperbolic equation (essentially 1.1) touch the shell. In  order 
to smooth out the singularity as much as possible, the neighbourhood of these 
circles must be considered by a boundary-layer type of argument. It then emerges 
that the singularity, in the pressure, can be removed but only at the expense of 
an integrable singularity in the velocity components on the characteristic cone 
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which touches the inner spherical boundary. When this cone meets the outer 
spherical boundary a new, integrable singularity in the velocity components 
occurs on the reflected characteristic cone and the pattern is repeated each time 
the cones meet one or other of the boundaries. 

Thus, even outside the neighbourhood of the critical circles, the velocity com- 
ponents contain a pathological term, generally of order e* compared to those 
found by Longuet-Higgins, periodic with wavelength O(ea) in the radial and 
latitudinal directions, and having an integrable singularity on the characteristic 
cones which, by repeated reflexion, touch the inner boundary. 

The precise significance of this result, it must be admitted, is not fully clear to 
us, handicapped as we are by an almost total absence of precise theorems about 
badly posed problems. It does seem likely that similar results hold for arbitrary 
thin shells, topologically equivalent to spherical shells. The essential requirement 
is that a characteristic cone should touch the inner boundary. There is no contra- 
diction with earlier work because in the only case of an inner boundary studied, 
two coaxial circular cylinders, no such characteristic cone exists. 

As e increases from zero we should expect that the extremely rapid oscillations 
of the secondary motion, of relative order €4, will diminish as the length of the 
generators of the characteristic cones, interrupted by the shell, increases. The 
pathology is therefore probably confined to the shells for which e < 1. On the 
other hand there does not appear to be any reason for excluding, as e increases, 
the integrable singularities on the characteristic cones, which come by reflexion, 
and it is distinctly possible that they are, in general, features of the free oscilla- 
tions. Only for containers either without internal boundaries or whose internal 
boundaries never touch the characteristic cones, and which incidentally have 
exclusively been studied hitherto, do the singularities disappea,r. 

2. Equations and formal procedure 
Consider a shell of incompressible inviscid fluid, bounded by two rigid con- 

centric spheres of radii a, b (a > b) ,  and rotating as if rigid with angular velocity S2 
about an axis Ox where 0 is the common centre of the spherical boundaries. 
A small disturbance is given to this steady motion and we wish to determine the 
periods of free oscillation of the subsequent motion of the fluid. Denote by u the 
fluid velocity measured relative to a set of axes rotating about Ox with angular 
velocity S2 and by (uR,u,,u4) its components in spherical polar co-ordinates 
(R, 8, 9); here R is the distance of a representative point X from the origin, 8 is 
the angle between OX and Ox, while q5 is the angle between the planes OSx and 
a plane through Ox fixed relative to the rotating axes. 

The equation of continuity is divu = 0 (2.1) 

and, neglecting squares and products of u, the equation of momentum reduces to 

(au/at) + 2!2 x u = - grad @, 

where p = ( p / p )  - +Q2R2 sin2 8, 
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p is the pressure and p the density of the fluid. It may easily be verified that these 
equations are separable in #I and t :  indeed if Q is one of the dependent variables 
un, uo, u+ or @, then Q may be expressed in the form 

Q = %lq(R, 8) eim$+iwgL, (2.4) 

where m is an integer, which may be either positive or negative, w* is a constant 
to be found and q(R, 8) is a function of R and 8 only. From now on we shall omit 
the exponential factors and it is understood that the real part is taken. Further 
let us write 

o* = Qw, @ = iQZRsin8P(R,p) and R = &(a+b)(l+c[). (2.5) 

The governing equations then reduce to 

ap 
aP 

wu-2pv = ( l - p 2 ) - - p P ,  

( 2 . 6 ~ )  

(2.6b) 

wV-2pU = -mP+2s2W (2 .6~)  

and the equation of continuity to  

The boundary conditions to be satisfied are that the radial component of velocity 
vanishes on each of the boundaries, i.e. 

W = 0 when [ = 1. (2.7) 

Although we shall find it convenient to base our discussion of the properties of 
the free oscillations on (2.6) it is worth noting that P satisfies the partial 
differential equation 

a2P 3aP 1-m2 4-w2a2P -+--+--p = ~~ a+ r ar r2 0 2  a22 7 

( 2 . 8 ~ )  

where R cose = x ,  RsinO = r ,  while (2.7) may be expressed as 

(2.8b) (w2 - 4p2) R- - 4,4 1 -p2 )  - + P(2wm + w2) = 0 

on R = a, b. Greenspan (1964, 1965) has shown that there are no solutions of 
( 2 . 8 ~ )  satisfying (2.8b) for real w unless IwI < 2 and, if IwI < 2 then the problem 
is badly posed, as noted in the introduction. 

Neglecting radial motions, formally valid in the limit e+O, (2.6), (2.7) reduce 
essentially to Laplace's tidal equations and the periods of the free oscillations 
have been found by Haurwitz (1940). Our aim here is to extend these by investi- 

ap a p  
aR aP 
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gating the effect of the terms in (2 .6 )  which depend on 6 .  Intuitively an appro- 
priate expansion to assume is 

u = V,(pu,g)+EUZ(pU,g)+..., v = K(p,fl)+eK(p,fl)+..., 

w == W,(/A,9)+4(pu,5)+..., p = P,(lu,E)+€P,(/A,E)+.. . ,  

w = w,+sw,+ .... 

We are thus attempting to set up an analytic expansion procedure with the aim 
of finding some properties of the free oscillations in shells of finite thickness. 
Anticipating the result, it  is observed however that this is not possible and the 
expansion must include pathological terms of order €4 in U ,  V .  

On substituting (2 .9)  into (2 .6 )  and comparing coefficients of equal powers 
of 6 ,  we find, from (2 .6a )  

so that Pl is independent of fl .  It follows immediately that U,, V, are also inde- 
pendent of E and hence, from (2.6d) that there exists a function Y1(p) such that 

aP,la$ = 0, (2 .10)  

u, = my,, v, = p Y 1 - ( 1 - / A 2 ) ( d Y 1 / d p ) .  (2.11) 

Further, from ( 2 . 6 ~ )  

and finally, using (2 .6  b )  

(2 .13)  

When m 2 1, (2.13) is the equation satisfied by Legendre functions or their 
associated forms and if, on physical grounds we require P,(/A) to be bounded as 
p + 2 1, w1 must be equal to one of a discrete set of real values which give us the 
first approximation to the free periods of oscillation of the fluid. In  fact 

2m 
- n(n+ 1)'  

w -- (2 .14)  

where n is a positive integer, a result already given by Haurwitz (1940) .  Other- 
wise the pressure behaves like (1 -p2 )dm near /A = 1 and/or p = - 1. When 
m = 0 on the other hand, the only possible solutions of (2 .6 )  are given by 

where A is an arbitrary constant. Hence if the pressure is to remain finite at 
p2 = 1 ,  w$ = 4 from (2 .15) .  The arbitrary constant A can be absorbed into the 
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pressure and then, since w: = 4, (2.15) completely satisfies (2.6) for all e. There is 
therefore, no need to pursue this case further here.? 

The solutions of (2.13) with rn > 1 are clearly similar in structure to those with 
m = 1 and so for the  remainder of this paper we shall concentrate on this case; 
the generalization to arbitrary m may then be carried out in a straightforward 
way. 

Setting m = 1, we continue the expansion formally and find, 011 comparing 
coefficients of e in (2.6a),  that 

PAP, 6) = 6Q2(iu) + pi(/k), ( 2 . 1 6 ~ )  

(2.16b) where 

and p, is at  present an arbitrary function ofp. Continuing we find that 

&2(,u) = rUw1y1- (2 + w1) (1 - $9 (dYl ldP)  

( 2 . 1 7 ~ )  

- -  
Here 01, V,, PI, satisfy the same relationships as U,, V,, Pl except that the right- 
hand side of (2.13) is now a function of pmultiplied by w2 and it may be established 
that an acceptable solution of (2.13) can only be found if w2 = 0. In that case, 
however, pl is proportional to Pl and without loss of generality may be set equal 
to zero. However, (2.17) does have a disquieting feature which may modify this 
conclusion but which is beyond the scope of this paper to settle beyond doubt. The 
feature is that the solutions for U,,V,, W, all have singularities when ,u = & $wl, and 
near these circles the second-order terms are not uniformly small with respect to 
the leading terms of the expansion of the velocity components in powers of e .  
This singularity is non-integrable and before we can safely make further progress 
we must, if possible, deal with the apparent non-uniformity near these circles. 

t A referee has, however, drawn our attention to a paper by Stern (1 963) in which the 
low frequency axi-symmetrical oscillations are discussed. The limit procedure is more 
complicated than ours for he supposes that w + 0 as E + 0 so that W/E* is bounded. His 
conclusions are strikingly different in that the oscillations are confined to the immediate 
neighbourhood of the equator ( p  = 0) ,  the stream function of the relative motion decaying 
inversely with distance from the equator. Whether a reconciliation between Stern’s theory 
and ours is possible, is a t  present an open question. We note however that he has assumed 
that the velocity derivatives are bounded everywhere which is in general unjustified in our 
limit procedure. Further he has assumed that if the stream function decays to zero as 
,u/e* --f 03 so do the velocities, which may not be the case. 
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3. The neighbourhood of the circle ,u = p0 

When we continue the expansion initiated in the previous section in a formal 
way we find that 

p, = - 1 2 )  ( k -  (?Z > Z ) ,  (w; - 4 p y - 5  
(3 .1 )  

where A ,  is a bounded function of <, p which is not identically zero when p = f &ol, 
and t h a t  there are corresponding singularities in U,, V ,  but of one degree higher. 
It may be inferred that the dominating scaling factor for p near one of these 

(3 .2 )  
circles is €4 and on writing 

i t  is found that near / L  = +wl all these singular terms in P when multiplied by the 
appropriate power of 6 are O(&) provided r ]  is finite and non-zero. A similar remark 
can be made about the neighbourhood of p = - &wl; we shall, however, restrict 
attention here to  the case defined by ( 3 . 2 ) .  The order of magnitude of the singular 
terms in U ,  V ,  W can also be estimated by a parallel argument and we are led to 
write, when r] = O(1)  

/Lo = gwl, / L  = /Ao + dr], 

U = A,L +  hi(^,^) + ..., (3.3 a) 
v = A,+EBZI(~,r])+ ..., (3 .3b )  

w = €.-lW( 6 ,  7) + . . . ) (3 .3  c )  

P = A ,  + “tyB, + E(T’C, + 60,) + eZ(p(6, 7) + . . . , ( 3 . 3 4  

(3*4)  
where A,, = ul(~~o), A ,  = K(p0), A ,  = Pl(~o) ,  B, = P;(Po))}  

c, = m P O ) ?  0, = & Z ( P O ) ,  

are constant. Further the terms omitted in (3 .3)  are formally smaller, by a factor 
O(s4) than any of those explicitly mentioned. We now substitute (3 .3 )  into (2 .6 )  
and compare coefficients of powers of E:, obtaining 

-2A, = - D P - A  P’ (3 .5  a )  

(3.5 b )  - zv = - (ajqa6) - TB,  
from the radial equations ( 2 . 6 ~ ) ;  

w l A , -  2 / ~ o A ,  = -A, ,  ( 3 . 6 4  

w1V - 2 / 4  Ti - ZyA,, = - TB, ( 3 . 6 b )  

from ( 2 . 6 ~ ) ;  (3.7) 

from (2 .6d ) .  We could also use (2 .66 )  but i t  is more convenient to  combine (2 .6b)  
and ( 2 . 6 ~ )  into 

( W 2 - 4 / P ) U  = - 2  p p  + W (  1 - pz) (appp) - pup + 4 p ~  w (3 .8)  

which reduces to  A ,  = (1-Po)Bp ( 3 . 9 a )  

~ I U ~ A , ~  = ( 1  + P O )  A,  +ruO(l+ ~ P J B , ,  - 2 ~ d l  - - P ~ C ,  (3 .9  b )  

and 4 p O F  = +~o)-rUo( l  - P i )  (ada7)  - 2Pow 

+ q 2 [ ~ o (  1 + / L O )  C, + ( 1  + / l o )  B, + 4,4 c, +/,boB, - 2A,]. (3.9 C )  
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The reduction of these equations involves considerable algebra, which is 
omitted. The final result is obtained after writing 

r] = (1 - p ; ) + x  (3.10) 

a2a a w  
at2 a t  ax x-+- = 1 for all x, I</ < 1 then CD satisfies 

and 

(3.12) 

(3.13) 

(3.14) 
- l a p  

2 a t  
v = --+&jBp, while 

1823 r] 5 = -- + - [( 1 + P O )  Bp - 2.41. 
2% 2Po 

(3.15) 

Provided that Q remains bounded it follows from (3.10) and ( 3 . 3 4  that as 
[x(-+m the form taken by P is identical with the expansion of P in (2 .9)  as 
p + p 0  to order B. Consequently we must add to (3.13) the condition 

CD is bounded for all x ,  6 ;  (3.16) 

then the expansions of P set out in (2 .9 ) ,  ( 3 . 3 4  together with a form analogous 
to ( 3 . 3 4  but appropriate to the neighbourhood of p = -p0 altogether constitute 
a uniformly valid expansion of P to order B. 

The asymptotic expansion of a particular integral of (3.12) satisfying (3.13) 
can be written in the form 

(3.17) 

The functions Fn([) may be determined by substitution into (3.12), (3.13); an 
interesting feature is that Fzn-l(t), F2,(<) must be determined together. It is 
noted in passing that if we had continued with our expansion (2 .9 )  a similar 
phenomenon would have arisen, namely that Pn-, (n > 2) cannot be determined 
fully without reference to P,. From (3.12) we obtain 

Fi = 1, Fk = Fi, .I$ = 3Fk, etc., (3.18) 

} (3.19) 
so that Fl = i(,52+b,[+a,), F2 = ( P ) ( < 3 + + b , ~ 2 + b 2 g + ~ , ) ,  

where the a, b, c are constants. From (3.13) we have that at [ = f 1 

4 = Q t 4 + ~ b l t 3 + a b 2 t 2 + b 3 f + U 3 ,  ..., 

Fi = 6, 2F; = F,, 2F4 = 3F2, ... (3.20) 

and using (3.19) we have successively 

b, = 0, i ( 1  +a,) = +(3 +b2) ,  2b, = +a2, b, = - $, 
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whence a 1 -  - 1. 6 (3.21) 

The remaining unknown constant is a2 and it is in fact arbitrary. However, since 
we need only one particular integral we can set as = 0; in effect we can choose 
(Dl so that Fn is alternatively even and odd in and we have 

as chosen the coefficients of x--4--3) where n is an integer, vanish on the spherical 
boundaries 6 = & 1, The solution is acceptable as 1x1 --+ m since it vanishes there, 
but not as x+ 0. Further it is odd in x as would be expected from the governing 
equations and boundary conditions. 

A general solution, acceptable for all x may be found as follows. From (3.12) 

(3.23) @ = X[  + P ( i x 2  - 5) + G(x) 

for some functions P, G to be found. Again, from (3.13) 

-2XF‘(*X2-~)+2x2+xP’(*x2-~)+G(X)+~ = 25 (3.24) 

on 5 = & 1 ; by subtraction the difference equation 

-xP’(*x2- 1) +xF’(*x2+ 1) = 2 (3.25) 

is obtained which may be integrated to give 

P(*x2+ 1) -F(*xZ- 1) = 2x, (3.26) 

where we have put the constant of integration equal to zero. The additional 
function that must otherwise be added to P is even in x and not relevant to our 
purpose here. 

Since @ is an odd function of z it must vanish on x = 0 for all I[\ < 1 which 

JY-8 = 0 (151 6 1). (3.27) implies that 

Hence we have 

and from (3.26) 
P(y)  = 0 (-1 6 y 6 l), 

P(y)  = 24[2(y-l)]  (1 < y 6 3) 
= 2Q[(y-l)++(y-3)$] (3 6 y 6 5 ) .  

N - 1  
In  general therefore P(y)  = 28 (y-2n-  1)+ (3.28) 

n=O 

where ly-2NI 6 1. The structure of the contribution of P(+xZ--[) to @ is 
illustrated in figure 1. Here P = 0 in regions 1 & , P = k 2 ,/(x2 - 25 - 2) in regions 
Z ? ,  3 5 )  P =  + 2 2 / ( x 2 - 2 & - 2 ) + 2 , / ( x 2 - 2 5 - 6 )  in regions 4 + ,  5 5 ,  etc. Thus 
although P is odd in x there is no discontinuity in P anywhere. On the other 
hand P’ is singular as one of the critical curves in figure 1 is approached through 
decreasing values of 1x1. 

This structure may easily be understood if we refer back for a moment to the 
basic equation governing the pressure (2.8a). This is hyperbolic and its charac- 
teristics in the (r,  x)-plane are the straight lines 

x + rp,/ .J( 1 -pi) = const. (3.29) 
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At the critical circle p = p0 one of these characteristics touches the spherical 
boundaries. If now we convert (3 .29)  into a relation between x and 5 then one 
characteristic becomes &xz-c = const. and the other x = const. This second 
family of characteristics is not normal to the spherical boundary: it only appears 
so because of the scaling relations in (2 .5) ,  (3 .2 ) .  Referring again to figure 1 it is 
clear that the boundaries of the successive regions are the characteristics of the 
basic equation ( 2 . 8 ~ ~ ) .  

The general solution for F(y)  may be put into a more compact form by taking 
the Laplace transform with respect to y, using s as parameter. It then follows 
from the inversion theorem that 

(3.30) 

[ = - I  2 2 4 2  2 d 3 x  

FIGURE 1 

where c > 0 is real. A formula for G ( x )  now follows on using (3 .24)  a.t < = 1 and 
taking, without loss of generality G(0) = 0 for 

G ( X ) - P ( & X ~ -  1) = x - $ x ~ ,  

so that 

An alternative form for G(x)  can also be obtained from (3 .28)  namely 

(3.31) 

(3.32) 

where 4 N  < x2 < 4 ( N  + 1) .  Referring to figure 1, G - x+ gx3 is zero in regions 
1 4 and 2 f , is equal to f 22/(x2- 4 )  in regions 3 2, 4 k, etc. 

The general solution for <D now follows from (3 .23)  

When 1x1 is large, part of this solution should match up with the particular 
integral found earlier (3 .22)  and the remainder should be bounded. Now the 
integral in (3.33) may be regarded as the sum of an integral round a cut along the 
negative real axis of s and of the residues a t  the poles of sinh s, other than s = 0. 
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Since these poles are on the imaginary axis the contribution from their residues 
is finite for all x. The contribution from the cut when x2 $ 1 is given by 

and, when added to x - #x3 + X E  makes a contribution to cD of 

3E2 6x + + O(x-3), (3.35) 

which is also the leading term of (3.20). So far so good and were it not for the poles 
we would be able to conclude that the singularity in U,, V,, W, at the critical circle 
had been reduced to manageable proportions. Singularities are still present in 
the velocity components but now have exponent - & only and so are integrable. 

However, the existence of the poles means that there is another contribution 
to cD which is periodic in x2 and therefore implies a pathological structure to the 
oscillations as one leaves the neighbourhood o f p  = po. The contribution to (3.30) 
from the poles of the integrand is 

4 2  (-)"cos(n7ry--7r)* 
K ( y )  = 7 c n8 

3 

n= 1 

hence the periodic contribution to cD is equal to 

K( 4x2 - 6) + K (  9x2 - 1 ) . 

(3.36) 

(3.37) 

When x2 is large, this function, although finite, dominates @ since the remainder 
tends to zero as x2+co. Further its period - 2/lxl when x2 $ 1 and so the oscilla- 
tion becomes ever more rapid as x2 increases. Again since it never dies out, the 
oscillations persist all over the spherical shell. In  physical terms this solution can 
be associated with disturbances travelling along characteristics bouncing from 
one spherical boundary to the other. The period is thus the change in p after 
moving from one boundary to another along a characteristic of one family and 
returning on a characteristic of the other, the path being continuous. In  terms 
of E then the period changes from being O ( d )  near p2 = pt to O ( E )  elsewhere. 

It is of interest to compute the function K ( y )  explicitly since it dominates 
when x2 9 1. For this purpose the most convenient procedure is to note that 
when ]yI < 1, on the one hand F(y)  vanishes since the integral in (3.30) may be 
completed by the infinite semi-circle to the right of the straight line 

s = c + i t  (It1 < 00) 

and on the other it is equal to 

(3.38) 

where I? is a contour extending to infinity on both sides of the cut, enclosing the 
origin but no other zeros of sinh s, and with sense such that the origin is on the left 
of the path of integration. For - 1 < y < 0 we have, since (3.38) is zero, 

49 Fluid Mdeoh. 35 
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and on expanding e&V+l)  term by term as a power series in s in the first integral 

( - 1)" (y + 1)" !Jn - 8)  (n- $)! 
2%-1 .J. n ! 

we obtain 

where {(n) is the Riemann zeta function. Although this expansion converges for 
all IyI < 1 it is more convenient to use another form for K when 0 < y Q 1, i.e. 

K W  
0.5 

FIGURE 2 

(3.40) 

) 

On expanding es(u-l) in powers of s(y - 1) and integrating term by term we get 

a (1  -y)" (n--$)! c(n- 4) 
2n-1 ,/T n ! K(y) = - z 

n = O  
(3.41) 

It is clear from (3.39), (3.41) that K( - 1) = K ( l )  as required by (3.38). A table 
of values of K(y)  in IyI Q 1 is given below, and the function is shown in this range 
in figure 2 .  

It is of interest to note that from (3.38) we may write 

m y )  = 4cs( - 4 7  4(1 +?A), 
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Y -1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 
K ( y )  -0.8316 -0.0865 0.1286 0.2512 0.3232 0.3612 0.3733 
Y - 0.3 - 0.2 -0.1 0 + 0.1 + 0.2 + 0.3 
K ( y )  0.3648 0.3388 0.2977 0.2435 0.1772 0.1000 0.0128 
Y +0.4 +0.5 +0.6 +0.7 + 0.8 +0 .9  + 1.0 
K ( y )  - 0.0838 - 0.1891 - 0.3027 - 0.4241 - 0.6529 - 0.6889 - 0.8316 

TABLE 1 

where C(n,a) is the generalized Riemann zeta function (see, for example, 
Whittaker & Watson 1927, pp. 265-80). 

The solution for @, whose study we have just completed, satisfies all the 
boundary conditions. However, during the argument by which it was derived, 
we assumed (3 .26)  that a constant of integration vanished and immediately 
afterwards that Q, E 0 on x = 0. If the constant of integration were A instead of 
zero but @ = 0 on x = 0, then we should have to add a term A N  to (3 .28)  which 
is not bounded at  infinity. Further it is discontinuous on the curved charac- 
teristics of figure 1 and this is an unacceptable propesty for the pressure to have. 
Hence we must set A = 0. 

It is not absolutely necessary to have CD 5 0 on x = 0 in order to obtain a 
solution for it is clear from (3 .26)  that any function of *x2 with periodicity 2 may 
be added to P. Such a function together with a corresponding form for G is 
bounded a t  infinity and satisfies the homogeneous equation and boundary condi- 
tions for Q, and is therefore not directly forced by the singularities in U,, V, at  
p = po discussed in $2. Further, such a contribution to Q,, being even in x, could 
not eliminate the effect of K both when x 3 1 and when x < - 1. At first sight 
therefore one might be inclined to exclude such a possibility but as we shall see 
in the next section it could arise from the periodic residue engendered by the 
singularity at  the critical circle p = - po. 

4. Discussion 
The argument of the previous two sections may be summarized as follows. 

An attempt is made to use the Longuet-Higgins solution of the Laplace tidal 
equation as the first term of an expansion, in powers of E ,  of the solution to the 
full equations governing oscillations in a spherical shell. It leads, however, to 
a singularity in the second-order terms at  the two critical circles where the 
characteristic cones touch the shell boundaries. Such a singularity might, in fact, 
have been anticipated from the form of the governing equation ( 2 . 8 ~ )  in spherical 
polars 

8 P  ap 
8R aP 

+ ( 1  -p2 - 4,@) R- - p ( 3  - 3p2 - 4&) - = 0 (4 .1)  

for the coefficient of 82P/8R2 vanishes on each of these circles (p = i po). In order 
to remove the non-uniformity at  p = po, an inner expansion must be set up and 

49-2 
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this turns out to have a rather surprising character. Above the characteristic 
cone Co which touches the inner boundary (R = b or 6 = - 1) the solution is 
smooth, the velocity being given by the Longuet-Higgins formula. On the other 
side of this cone the pressure develops a new term with an algebraic singularity of 
exponent 4 at the cone. Further, through the circle where this cone meets the 
outer boundary (R = a or 5 = + 1) a characteristic cone C, of the other family can 
be drawn and on the other side of this new cone another singularity of the same 
kind is added to the pressure. The same process is repeated on all subsequent 
cones C, where C, is the reflexion, at one or other of the boundaries, of Cn-,. As 
the distance from the critical circle increases the pressure is repeatedly aug- 
mented in this way, some of which is necessary to form a match with the outer 
solution. However, the match is not complete as there is a residual periodic term 
in the inner solution, not accounted for in the outer solution as initially computed. 
This term, which is O ( d )  in the tangential velocity components, O ( E )  in the radial 
component and O(&) in the pressure extends therefore into the main body of the 
fluid where it becomes slowly modified as p changes but, in essence, repeating the 
principal features of its structure after two reflexions of the characteristic cones 
from the boundaries, i.e. after a distance O(as) which may be compared with the 
period O(ue4) in the neighbourhood of p = ,ao. The radial component also increases 
from O(E)  to O(s4). Another important feature of the structure of this quasi- 
periodic term is the square root singularity in pressure on one side only of the 
characteristic cones, and which corresponds to an inverse square root singularity 
in the velocity components. It is considered that this modification to the earlier 
elementary solution, in which radial motions are neglected, may fairly be 
described as pathological. Similar remarks apply to the quasi-periodic solution 
emanating from p = -po. 

There are unfortunately very few precise mathematical theorems about the 
kind of problem under discussion, so that it is possible that the pathology we 
have just been describing is a creature of the particular limiting process adopted 
and not actually present when B + 0. So far as we can tell it does, nevertheless, 
seem real enough and in that event the description of free oscillations controlled 
by an equation like (2.8a) is likely to be complicated. The rapid oscillations in p 
we have found become finite in number when E > 0, the total depending on the 
number of reflexions of characteristic cones needed before the pattern reaches 
from one pole to the other or repeats itself. The singularity on one side of the 
characteristic cone, which touches the inner boundary, and on its reflexions is 
more serious for there seems no reason why these should disappear for E > 0. If 
present, the implication is that the velocities are no longer integrable in square 
and the hitherto comforting view that the free oscillations are analytic must be 
abandoned. In  addition there is nothing special about the spherical shell: a similar 
argument goes through for other shells, provided only that a characteristic cone 
can touch the inner boundary and so the curious behaviour we have found may 
well be typical of a large class of rotating cavities containing fluid. 

Finally, we note that it has not yet been established that as the pathological 
wave advances towards p = ~f: 1 from p = po it  takes on forms which enable it t o  
pass through the axis of rotation without an unacceptable singularity. The wave 
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needs roughly e-l reflexions to reach the line p = 1 and the simplest way out of 
this difficulty is to assume that the actual value of po (2.14, 3.2) is in error by 
O(e) which would give a little freedom near p = 1 hopefully to enable it to be 
reached while keeping the pressure finite. Earlier it was established that for a 
regular expansion of the solution in powers of 6, w2 = 0 (see (2.9) for definition) 
which contradicts this suggestion. However, the assumption of a regular expan- 
sion is now seen to be untenable, and a further investigation is needed to deter- 
mine more precisely the dependence of po on e. 
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